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Systematic generation of face-transitive tilings by size of Delaney–Dress symbol

has recovered by dualization all the edge-transitive nets previously described

and has led to the discovery of six new binodal edge-transitive nets which are

described and illustrated.

1. Introduction

In the designed synthesis of crystalline materials by linking

molecular building units (reticular chemistry, Yaghi et al.,

2003), nets with just one kind of edge (edge-transitive) play a

pre-eminent role. Previously (Delgado Friedrichs et al.,

2003a,b, 2006), we described 20 uninodal (vertex-transitive)

and 28 binodal nets of this kind. Of the last work, a prescient

referee remarked that there was ‘little smell of unsatis-

factoriness, because of the fact that no proof of completeness

is given’. Part of the problem is that we know in fact of infinite

families of edge-transitive nets (Delgado-Friedrichs et al.,

2005) and we have somewhat arbitrarily chosen what we

believe to be a finite subset of the ‘most important’ (in the

context of reticular chemistry) nets that obey the conditions

that (a) for uninodal nets in their most symmetric embeddings

there are no intervertex distances shorter than the edge length

or (b) for binodal nets similarly embedded there are no

distances between unlike vertices that are shorter than the

edge length.

The problem of systematically and exhaustively enumer-

ating nets is a very difficult one and rapidly leads to explosions

in the number of candidates (e.g. Bader et al., 1997; Treacy et

al., 2004). One of the most fruitful methods has been the

enumeration of periodic tilings, and hence the nets they carry,

using the methods of combinatorial tiling theory (Delgado-

Friedrichs et al., 1999).

Periodic tilings can be encoded in Delaney–Dress symbols

(here D-symbols) introduced by Dress (1984, 1987) inspired

by earlier work by Delaney (1980). D-symbols have proven

invaluable in many areas of tiling theory as they can be

systematically generated and those associated with tiling of

Euclidean space explicitly recognized (Delgado-Friedrichs,

2001). A tiling can be divided up into fundamental simplices

called chambers and the D-symbol specifies how these are

joined to form the tiling. The number of separate kinds (i.e.

not symmetry-related) of such chambers is known as the size

of the symbol and we refer to it as the D-size.

An important paper (Dress et al., 1993) that provided some

inspiration for the present work showed that, for tilings of

space by conventional polyhedra (i.e. those with 3-connected

planar graphs), there are just seven topological types of face-

transitive tiling. In the dual of a three-dimensional tiling, the

correspondence is vertex$ tile and edge$ face so the duals

of these structures are edge transitive. They carry the well

known nets with symbols pcu, fcu, sod, reo, crs and flu.1

Clearly this approach does not lead to all edge-transitive nets;

familiar structures such as the net (dia) of diamond are

missing. The reason is that the tiles in tilings for most nets are

not polyhedra sensu stricto but are cages with divalent vertices

(see e.g. Delgado Friedrichs et al., 2003a). Accordingly, in this

work we have undertaken systematic enumeration of edge-

transitive tilings; these will carry edge-transitive nets.

2. Enumeration methods

A net may admit an infinite number of tilings but tilings with

the same symmetry (isomorphism group) of the net are limited

– indeed in many cases unique – so we limit tilings to those of

this sort which we term proper.

In order to generate edge-transitive tilings, it is easier to

think in terms of the dual problem, namely generating face-

transitive tilings. These two problems are completely equiva-

lent and, indeed, a tiling and its dual have D-symbols of the

same size which can be transformed into each other in a trivial

way. Given a face-transitive tiling, we can then directly

determine the net carried by its dual tiling by putting a node

inside each tile and connecting two nodes whenever the

corresponding tiles share a face.

We have adapted the approach of Dress et al. (1993) which

distinguishes three types of face-transitive tilings. The first has

one kind of tile and one kind of face with respect to the site

symmetry of the tile. The second type also has one kind of tile,

but two kinds of face with respect to the site-symmetry group.

These two kinds can be imagined as the two sides of a coin

insofar as, when tiles are assembled to form a tiling, a face of

the first kind always has to be matched with a face of the

second kind (i.e. head to tail). The third type of tiling has two

1 The reader will have noticed that we list only six nets; this is because two of
the relevant tilings (the duals of numbers 4 and 80 in Table 2 of Dress et al.,
1993) carry the same net (fcu). Symbols for nets are those in the RCSR
database of nets at http://rcsr.anu.edu.au.



kinds of tile, each with one kind of face. In this case, then, in

order to make the tiling face-transitive, two tiles of the same

kind may never share a face.

Similarly to Dress et al. (1993), we started by finding all

potential tiles with either one kind or two kinds of face but

without divalent vertices. From these we construct all possible

tiles that correspond to a given target D-symbol size by

splitting edges and inserting new nodes of valency 2.

In the next step, we generate candidate Delaney symbols by

looking at all possible ways of connecting one or two given

kinds of tile from our previous list. Not all of these will

correspond to actual tilings of regular space. Finding out which

do can be rather difficult. In practice, however, this can usually

be decided relatively quickly by using a method described by

Delgado-Friedrichs (2001).

Finally, we determine all the nets that these tilings carry,

extract the proper ones and remove duplicates (Delgado-

Friedrichs & O’Keeffe, 2003); this procedure is implemented

as part of the software package Gavrog (http://www.gavrog.

org) by the first-named author. The number of candidate nets

before screening increases rapidly to some thousands, and the

computing becomes onerous, as the D-symbol size increases,

so we need to cut off the generation process at some point. We

determined that all the known edge-transitive nets had proper

tilings with a D-symbol size � 32 so this was used as a target.

Notice that what we call natural tilings (Delgado Friedrichs et

al., 2003a,b, 2006) are sometimes derived as subdivisions of

tilings with the minimum D-symbol size and hence have larger

size.

Tiles are topological spheres and in Fig. 1 we show some

illustrative examples as tilings of the surface of a sphere. The

first row shows a tetrahedron [34] (left) converted to a tetra-

hedron [64] (adamantane unit) by inserting six extra vertices.

On the right in the figure is shown the adamantane unit as it
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Table 1
Edge-transitive nets retrieved in this study listed by size of the Delaney–
Dress symbol (D-symbol) of the proper tiling with smallest size.

The three-letter symbols are the RCSR (http://rcsr.anu.edu.au/) symbols.

D-symbol size Uninodal Binodal

1 pcu
2 bcu, dia, fcu, nbo flu
3 reo, sod
4 crs, hxg ftw
6 acs
8 rhr bor, mgc, nia, ocu, rht, she, soc, spn,

tbo, the, toc, ttt, twf
10 lcs, lvt, lcy, srs ith, scu, shp, stp
12 lcv alb, pto
14 qtz pts
16 bcs sqc
20 thp csq, ssa, ssb
24 ana gar, iac, ibd, pyr, ssc
28 ifi
32 ctn, pth

Figure 2
Augmented versions of the new edge-transitive nets found in this paper.

Figure 1
Left: from top tilings [34], [34] and [24] of the surface of a sphere. Middle:
derived [64] tilings. Right: embeddings of these tiles in tilings discussed in
the text.



appears in the tiling whose dual carries the edge-transitive net

ana (this is the net of the zeolite framework with code ANA).

In this tiling, the tile has symmetry 2 (C2) and the faces are of

two kinds, shown as yellow and blue in the figure. The second

row in the figure shows the generation of a different [64] tiling

from [34]. In the third row yet another [64] tile is derived – this

time starting from [24]. The second and third tiles combine to

form a tiling whose dual carries a new binodal edge-transitive

net (ssc). Note that in this example the graph of the face-

transitive tiling includes 2-rings (multiple edges) and would

not be considered as a crystal net. However we are interested

only in the graphs of the duals, and this objection does not

arise for the dual in this case.

3. Results

61 distinct edge-transitive nets were found for tilings with

D-symbol size � 32. Of these, seven did not fit our criteria

(had short non-edge intervertex distances). Symbols for the

rest are listed in Table 1. Of these, six did not appear in our

previous compilations (Delgado Friedrichs et al., 2003a,b,

2006)2 – some relevant properties of these are listed in Table 2.

These new nets are illustrated in augmented form (vertices

replaced by a vertex figure of vertices) in Fig. 2.

Two of the rejected uninodal nets are worth a brief mention.

The first is derived from the lattice complex Y (Fischer &

Koch, 1983). The net of the structure with nearest-neighbor

distances as edges appears in our earlier report (Delgado

Friedrichs et al., 2003b) with symbol lcy. The net with the 12

second-neighbor distances as edges (known to the RCSR

database as lcz) is one of the rejected structures. The vertices

of the lattice complex W have only two neighbors and the

graph (lcw) of the vertices and edges corresponding to the

nearest neighbors consists of disjoint 1-periodic graphs, and

hence is not considered a crystal net. However, the graph

derived by identifying second-neighbor distances as edges is

connected and edge-transitive (and known to RCSR as lcx).

These two examples show that we might expect to derive

infinite families of edge-transitive nets by starting from

symmetrical arrays and identifying edges as links to increas-

ingly distant neighbors. This is indeed the case, and we have

found, in an unpublished study, 25 infinite families of periodic

edge-transitive nets with just one vertex in the repeat unit

(‘lattice nets’). So in a sense the ‘whiff of unsatisfactoriness’

mentioned in the Introduction remains, although we hope it is

now less pronounced.

On the positive side, we note that no new vertex- and edge-

transitive nets with edges corresponding to shortest distances

were found, suggesting that our list may have been complete.

This belief is bolstered by a study of Blatov (2007) which

enumerated all subnets of known vertex-transitive nets and

which found no new edge-transitive structures. We also take

pleasure in the observation that all previously known struc-

tures were generated in our search; this once again shows the

utility of tiling theory in systematically generating nets.
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Table 2
Edge-transitive nets with two vertices of coordination number Z.

‘symb’ is the symbol for the net, ‘ps’ refers to point symmetry of order o0. ‘sg’ refers to space group and ‘trans’ to transitivity of the tiling. Each of the two lines for
each net provide data for one of the two vertices.

Z Vertex figure symb ps o0 sg x, y, z Tiles trans
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